
Succinct Data Structures and
Delta Encoding for Modern
Databases
Matthijs van Otterdijk1,2 and Gavin Mendel-Gleason1,3 and Kevin Feeney1,4

1TerminusDB http://terminusdb.com
2matthijs@datachemist.com
3gavin@datachemist.com
4kevin@datachemist.com

January 14, 2020

M odern hardware architectures include
larger main memory and pervasive par-
allelism. Modern software development

processes now incorporate continuous integra-
tion/continuous delivery (CI/CD) coupled with re-
vision control. These fundamental changes to in-
formation technology infrastructure necessitate a
re-appraisal of database architecture. TerminusDB
makes a radical departure from historical architec-
tures to address these changes. First, we imple-
ment a graph database with a strong schema so as
to retain both simplicity and generality of design.
Second, we implement this graph using succinct
immutable data structures which enable more spar-
ing use of main memory resources. Prudent use
of memory reduces cache contention while read-
only data structures simplify parallel access signif-
icantly. Third, we adopted the delta encoding ap-
proach to updates as is used in source control sys-
tems such as git. This provides transaction process-
ing and updates to our immutable database data
structures, recovering standard database manage-
ment features while also providing the whole
suite of revision control features: branch, merge,
squash, rollback, blame, and time-travel facilitat-
ing CI/CD approaches on data.

1 Introduction

There has been an explosion of new database designs,
including graph databases, key-value stores, document
databases, andmulti-model databases. Yet the majority
of production databases are still based on the RDBMS
designs of the 1970s(Codd, 1970). This has become a
bottleneck in an increasingly automated modern tech-
nology operations environment.
Meanwhile, both hardware infrastructure and soft-

ware design process have moved on significantly over
the course of the last 40 years. In particular, machines
with terrabytes of RAM are now available for prices
reasonable enough for some small and medium sized
enterprises.
At the same time, flexible revision control systems

have revolutionised the software development process.
The maintenance of histories, of records of modifica-
tion and the ability to roll back enables engineers to
have confidence in making modificiations collabora-
tively. This is augmented with important features such
as branching, labelling, rebasing, and cloning. When
combined with continuous integration/continuous de-
livery(Kaiser, Perry, & Schell, 1989)(Laukkanen, Itko-
nen, & Lassenius, 2017) (CI/CD) teams of program-
mers can have confidence that central repositories are
maintained in correct states such that they can be
safely deployed once testing and verification have been
passed.
These two developments suggest a solution at their

intersection. Namely, the use of in-memory immutable



Succinct Data Structures and Delta Encoding for Modern Databases

succinct data structures and deltas as used in revision
control systems. TerminusDB demonstrates how these
features can be combined to produce a flexible trans-
actional graph database.

2 Design

TerminusDB is a full featured graph database man-
agement system (GDBMS) with a rich query language:
WOQL (theWeb Object Query Language). However, we
restrict our attention here to the underlying data struc-
ture design and layout which we have implemented in
a Rust(Blandy, 2015) library which we call terminus-
store.
We describe in turn the graph database model which

is used, the succinct data structure approach, and fi-
nally how we implement revision control type opera-
tions using deltas which we collect together with some
metadata into objects which we term layers.

2.1 Graph Databases

Graph databases are one of the fastest growing new
database paradigms. Since graphs are very general it is
possible to render many database modeling techniques
in a graph database. The simplicity and generality of
graphs make it a good candidate for a general-purpose
delta encoded approach to an online transaction pro-
cessing database.
The TerminusDB infrastructure is based on the RDF

standard. This standard specifies finite labelled di-
rected graphs which are parameteric in some universe
of datatypes. The names for nodes and labels are
drawn from a set of IRIs (Internationalized Resource
Identifiers). For TerminusDB we have chosen the XSD
datatypes as our universe of concrete values.
More formally, in TerminusDB a graph G is a set of

triples drawn from the set IRI × IRI × (IRI ⊕XSD)
where IRI is a set of valid IRIs and XSD is the set
of valid XSD values. While some RDF databases allow
multiplicity of triples (i.e. a bag), the choice of a set
simplifies transaction processing in our setting.
For schema design, TerminusDB uses the OWL lan-

guage with two modifications to make it suitable as a
schema language. Namely, we dispense with the open
world interpretation and insist on the unique name as-
sumption(Feeney, Mendel-Gleason, & Brennan, 2018).
This provides us with a rich modelling language which
can provide constraints on the allowable shapes in the
graph.
TerminusDB, following on from the RDF tradition,

is not a property graph. However, OWL extends RDF
graphs with powerful abstractions such as classes, re-
strictions, and strongly typed properties. We can
choose to interpret objects as either nodes or relation-
ships as we please. In a logical sense, property graphs
are equivalent to a single view of a more expressive
OWL graph. This choice leads to a simplification of the

String Offset Remainder

Pearl Jam 0 Pearl Jam
Pink Floyd 1 ink Floyd
Pixies 2 xies
The Beatles 0 The Beatles
The Who 4 Who

Table 1: Plain Front Coding Dictionary

underlying representation, which, as we will see, is
important when constructing succinct data structures
with change sets.

2.2 Succinct Data Structures

Succinct data structures(Jacobson, 1988) are a family
of data structures which are close in size to the infor-
mation theoretic minimum representation. Technically,
they can be defined as data structures whose size is:

n+ o(n)

Where n is the information theoretic minimum size.
Succinct representations are generally somewhat more
computationally expensive than less compact represen-
tations with pointers when working with small datasets.
However, as the size of the datastructure grows, the
ability to avoid new cache reads at various levels of
the memory hierarchy (including reading information
from disk) means that these representations can prove
very speed competitive(Gog & Petri, 2014) in practice.

TerminusDB largely borrows its graph data structure
design fromHDT(Martínez-Prieto, Arias Gallego, & Fer-
nández, 2012) with some modifications which simplify
the use of change sets. The authors originally evalu-
ated HDT as a possibility for a graph which was too
large to fit in memory when loaded into postgresql and
found that queries on the resulting graph performed
much better in HDT(Mendel-Gleason et al., 2018).
In particular, the primary datastructures of the HDT

format are retained, namely front coded dictionaries,
bit sequences and wavelet trees.

2.2.1 Plain Front-Coding Dictionary

Due to the unusual quantity of shared prefixes found
in RDF data due to the nature of URIs and IRIs, front-
coding provides a fast dictionary format with signif-
icant compression of data(Martínez-Prieto, Brisaboa,
Cánovas, Claude, & Navarro, 2016).
The primary operations exposed by the data struc-

ture are string-id which gives us a natural number cor-
responding with the string, and id-string, which gives
a string corresponding with a natural number.
The data strucure sorts the strings and allows shar-

ing of prefixes by reference to the number of characters

Page 2 of 6



Succinct Data Structures and Delta Encoding for Modern Databases

Triples Encoding Description

(1, 2, 3) 1 2 3 Subject Ids
(1, 2, 4) 1 1 0 1 Encoded Subject Bit Sequence
(2, 3, 5) 2 3 4 5 Predicate Vector
(2, 4, 6) 1 0 1 1 1 Encoded Predicate Bit Sequence
(3, 5, 7) 3 4 5 6 7 Object Vector

Table 2: Succinct Graph Representation

from the preceeding strings which are shared. An ex-
ample is given in Table 1. The position in the dictionary
gives us the implicit natural number identifier.

2.2.2 Succinct Graph Encoding

Once subject, object, and property of an edge have
been appropriately converted into integers by use of
the subject-object dictionary, the value dictionary, and
the predicate dictionary, we can use these integers to
encode the triples using bit sequences.
Succinct sequences encode sequences drawing from

some alphabet σ. In the case of a bit-sequence, σ =
{0, 1}. They typically expose (at least) the following
primitives:

• rank(a, S, i) which counts occurances of a in the
sequence from S[0, i].

• select(a, S, i)which returns the location of the i-th
occurance of a in the sequence S.

• access(S, i) which returns the symbol at S[i].

Given a sorted set of triples for each subject identifier
in order from {0..n} where n is the number of triples,
we emit a 1 followed by a 0 for every predicate associ-
ated in a triple with that subject. We then produce a
vector of all predicates used and the association with
the subject is apparent from the position of zeros in
the bit sequence.
We repeat the process for predicates and objects

resulting in a complete encoding for our triples. We
can see an example in Table 2. We have written the
vectors in this table so that the triples are vertically
aligned, with subjects in blue, predicates in red, and
objects in green in order to make the encoding easier
to see. The subject identifiers are actually implicit in
the number of 1s encoded in the subject bit sequence
and are only written in the table for clarity.
This format allows fast lookup of triples based on

query modes in which the subject identifier is known,
as we can use select to find the position in the predicate
vector and subsequently use the predicate identifier to
select in the object vector. We use a wavelet tree to
enable search starting from the predicate. Details of
this can be found in (Martínez-Prieto et al., 2012).

2.3 Delta Encoded Databases

The use of delta encoding in software development is
now ubiquitous due to the enormous popularity of the

git revision control system which makes use of these
techniques to store histories of revisions.
Git stores objects which contain either the complete

dataset of interest or the information about what is
updated (deleted/added) as a delta. All changes to the
source control system are thereby simply management
problems of these objects.
This approach exposes a number of very powerful

operations to sofware developers collaborating on a
code base. The operations include:

• History: Since new updates are actually layered
over previous ones, developers can time travel,
looking into the past, rolling back to the past, or
even reapplying changes to current versions.

• Branching: Developers can create a derived ver-
sion of a given code-base where additional oper-
ations can be performed without disrupting the
original.

• Merging: When two branches diverge, the
changes can be merged into a single version by
choosing a strategy for combining changes.

These features have powered a revolution in software
engineering and have elevated the importance of dev-
ops automation in modern IT infrastructures. It would
be nice if we could apply them to databases too and
similarly elevate the field of data-ops. However, git
itself is not the solution – git is squarely focused on
code management, and data and code differ in some
important fundamental characteristics.
Codebases can be adequately modelled as a hierar-

chy of directories containing files, with changes mod-
elled as the addition or subtraction of lines of text to
these files. Databases, by contrast, lack a universal nav-
igation and addressing mechanism like the filesystem.
They often have complex internal structures which gov-
ern the granularity of updates. They cannot usefully
be reduced to the same universal unit of comparison as
used by code: the line of text. Given that databases can
be many times larger than even the biggest code-base,
the fineness of the granularity of diffs is an important
performance factor.
TerminusDB uses nodes and edges, replete with

classes and restrictions to model the structure of data
– enabling a fine-granularity in expression of changes.
Otherwise, it uses a similar approach to git for express-
ing updates. A given database is comprised of layers
which stand in place of the objects of git. Each layer is
identified by a unique 20-byte name. The base layer
contains a simple graph represented using the succinct
data structures described earlier.
Above this layer, we can have further layers. Each

additional layer above the base layer is comprised of
additional dictionaries for newly added subjects and
objects, predicates, or values. It also contains the index
structures used for the base graph to represent positive
edges which have been added to the graph. And we
have amembership set of negative edges which describe

Page 3 of 6



Succinct Data Structures and Delta Encoding for Modern Databases

Figure 1: A graph composed of layers

those triples which have been deleted as shown in
Figure 1.
Each layer has a pointer to the previous layer which

is achieved by referring to its 20-byte name.
This immutable chain structure allows for straight-

forward uncoordinated multi-read access some-
times called multiversion concurrency control
(MVCC)(Mohan, Pirahesh, & Lorie, 1992)(Sadoghi,
Canim, Bhattacharjee, Nagel, & Ross, 2014). This
approach also makes branching simple to implement.
Any number of new layers can point to the same
former parent layer.
In order to manage these layers as datastores, we

use a label. A label is a name which points to one of
the 20-byte identifiers. In the present implementation
this is a file with the name of the label containing the
20-byte identifier.

2.3.1 Dictionary modifications

Due to the use of delta encodings, new triples can be
added which are not present in the original dictionary.
We therefore start new dictionaries with a recorded
offset, remembering the last bucket from the previous
dictionary.

2.4 Write Transactions

When an update transaction is initiated, a new layer
builder is created, which logs all newly inserted or
deleted edges. When this layer builder is committed,

Figure 2: Write transaction workflow

it yields a layer which has organised the insertions in
our succinct data structures.
In TerminusDB we require that graphs conform to

the constraints imposed by the OWL description of the
dataset. This means that we produce a hypothetical
database by committing the layer builder without ad-
vancing head. First, we check that the constraints hold
on this new intermediate database. After these are
passed, it is safe to advance head to this newly created
layer. Advancing is done by side-effecting the label to
point to the new 20-byte value. The problem of coor-
dination in the face of side-effects is reduced to the
problem of label management, simplifying much of the
architecture. A schematic of the workflow of the write
transaction is given in Figure 2.
Automated checking of data constraints is particu-

larly important if we are to confidently merge database
branches that might have divergent schemas or mutu-
ally inconsistent states (e.g. where we have a property
with a cardinality of exactly one in both branches, but
with a different value in each). At a minimum, we need
to ensure that merging branches does not result in the
database entering an inconsistent state and hence, al-
though constraint checking is beyond the scope of this
paper, it is a critical piece of the puzzle in enabling
automated data-ops(Mendel-Gleason, 2018).

2.5 Delta compression

As new updates are performed the database layer depth
increases. This will incur a performance penalty requir-
ing repeated searching at each layer for every query.
In order to improve performance, we can perform a
delta compression similar to the mechanisms used in
git. Alternatively, we can recalculate the full dataset as
a new base-layer. In git, this delta compression step can
be performed manually, or it will occur when a depth

Page 4 of 6



Succinct Data Structures and Delta Encoding for Modern Databases

threshold is passed.
Since the layers are immutable, this operation can

be done concurrently. Commits that occur before the
process is completed simply layer over the delta with
no visible change in the content of the database.
Compressed deltas of this type can allow older lay-

ers to be archived, or even deleted. The removal of
previous layers removes the capacity to time travel or
to track whether the database arose from a branch.
However, this information can be kept seperately in a
metadata repository allowing memory of the branching
structure and other information about previous com-
mits, but not the capacity to time-travel to them. We
plan to implement this graph metadata repository in
future version of TerminusDB.

3 Future Work

Values are stored as strings using a plain front coding
dictionary uniformly for all data types. Obviously, this
is less than ideal in that it causes an expansion in size
for the storage of integers, dates, and other specific
types. It also means that, only search from the begin-
ning of the datatype is optimised. In future versions of
Terminus-store, we hope to differentiate our indexing
strategies for the various datatypes in XSD.
For strings, the use of succinct data structure im-

mediately suggests a potential candidate: the FM-
index(Ferragina & Manzini, 2005). With FM-indexing,
very large datasets could still have reasonable query
times for queries which are typically done on full text
indexes using inverted term-document indexing. We
have yet to explore the candidates for numeric and
date types.
Currently the tracking of history and branches is

implicit. We intend to adopt a more explicit approach,
storing a graph of the various commits coupled with
timestamps and other metadata which will facilitate
effective management.

4 Conclusion

The use of advanced CI/CD workflows for databases as
yet has not been practical due to the lack of tool-chain
support. In the software world, we have seen just what
a large impact appropriate tools can make with advent
of git.
TerminusDB makes possible these collaborative

CI/CD type operations in the universe of data man-
agement.
This is made possible because of the synergies which

an immutable layered approach has with the succinct
data structure approach that we have used for encod-
ing.
TerminusDB provides a practical tool for enabling

branch, merge, rollback, and the various automated
and manual testing regimes which they facilitate on a

transactional database management system which can
provide sophisticated query support.

Bibliography

Blandy, J. (2015). The rust programming language: Fast,
safe, and beautiful. O’Reilly Media, Inc.

Codd, E. F. (1970). A relational model of data for large
shared data banks. Commun. ACM, 13(6), 377–
387. doi:10.1145/362384.362685

Feeney, K. C., Mendel-Gleason, G., & Brennan, R.
(2018). Linked data schemata: Fixing unsound
foundations. Semantic Web, 9(1), 53–75. doi:10.
3233/SW-170271

Ferragina, P., & Manzini, G. (2005). Indexing com-
pressed text. J. ACM, 52(4), 552–581. doi:10.
1145/1082036.1082039

Gog, S., & Petri, M. (2014). Optimized succinct data
structures for massive data. Software: Practice
and Experience, 44(11), 1287–1314. doi:10 .
1002/spe.2198. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.2198

Jacobson, G. J. (1988). Succinct static data struc-
tures (Doctoral dissertation, Pittsburgh, PA, USA).
AAI8918056.

Kaiser, G. E., Perry, D. E., & Schell, W. M. (1989). In-
fuse: Fusing integration test management with
changemanagement. In [1989] proceedings of the
thirteenth annual international computer software
applications conference (pp. 552–558). doi:10 .
1109/CMPSAC.1989.65147

Laukkanen, E., Itkonen, J., & Lassenius, C. (2017).
Problems, causes and solutions when adopting
continuous delivery—a systematic literature re-
view. Information and Software Technology, 82,
55–79. doi:https://doi.org/10.1016/j.infsof.
2016.10.001

Martínez-Prieto, M. A., Arias Gallego, M., & Fernández,
J. D. (2012). Exchange and consumption of huge
rdf data. In E. Simperl, P. Cimiano, A. Polleres,
O. Corcho, & V. Presutti (Eds.), The semantic web:
Research and applications (pp. 437–452). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Martínez-Prieto, M. A., Brisaboa, N., Cánovas, R.,
Claude, F., & Navarro, G. (2016). Practical com-
pressed string dictionaries. Information Systems,
56, 73–108. doi:https://doi.org/10.1016/j.is.
2015.08.008

Mendel-Gleason, G. (2018). Machine checkable formal-
isation of owl semantics. TerminusDB. URL: http:
//terminusdb.com/t/docs/OWL-formalisation.
pdf.

Mendel-Gleason, G., Feeney, K., O’Donoghue, J.,
Łobocka, S., Zejer, P., Błędski, P., & Dirschl, C.
(2018). Evolving meaningful value from enter-
prise data. TerminusDB. URL: https : / /www.
datachemist . com/ images / uploads / general /

Page 5 of 6



Succinct Data Structures and Delta Encoding for Modern Databases

Evolving_MeaningfulValuefromEnterpriseData.
pdf.

Mohan, C., Pirahesh, H., & Lorie, R. (1992). Effi-
cient and flexible methods for transient version-
ing of records to avoid locking by read-only
transactions. In Proceedings of the 1992 acm sig-
mod international conference on management of
data (pp. 124–133). SIGMOD ’92. doi:10.1145/
130283.130306

Sadoghi, M., Canim, M., Bhattacharjee, B., Nagel, F.,
& Ross, K. A. (2014). Reducing database locking
contention through multi-version concurrency.
Proc. VLDB Endow. 7(13), 1331–1342. doi:10.
14778/2733004.2733006

Page 6 of 6


